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CHAPTER I
INTRODUCTION

Although one cannot expect exact solutions for a given quantum

mechanical eigenvalue problem, it is often possible to find upper and

lower bounds to the eigenvalues. Upper bounds can be obtained satis-

factorily by thé well-known variational calculations, for example,

(1,2],

Rayleigh-Ritz procedures ; however, in order to estimate the

accuracy, the knowledge of lower bounds is essential.

The problem of finding lower bounds has been approached in

many different ways. Among those, the intermediate problems origi-

[3] [4]

nated by A. Weinstein and extended and developed by Aronszajn

have been widely used. Many fundamental problems in quantum theory have

(5]

been studied by Bazley and Fox using these intermediate problems.

| [6:7}

Recently P. 0. LbYwdin has developed a new method for the

study of lower bounds to energy eigenvalues by the use of the parti-

(8]

tioning technique . In the partitioning technique, the first order

iteration procedure 51(

1 - f(ﬁk) brackets at least one true eigen-

uw[6]

value E. By means of an "inner projection on a finite manifold

in the Hilbert Space, one can evaluate lower bounds to any desired
. ﬁ o .

accuracy. For a Hamiltonian of the form = ?H’ + V, where V is

positive definite, one may consider the intermediate Hamiltonians:

jgf (n) = ;ﬁeo +-v%b“v%




n . .y . .
where Q 1s a Hermitian projection operator for an arbitrary subspace

4,97

of order n, which for n»» converges towards the identity operator
In the first part of this dissertation, we devéloP the theo~
retical foundations of our approach through the partitioning technique
extended to a multi-dimensional reference manifold.
In the last part, we apply these procedures to the Stark
effect in'the rigid rotator as ;n example of a one-dimensional refer-
ence manifold apd to the two-electron isoelectronic series as an

example of a multi-dimensional reference manifold.

n



CHAPTER 1I
VARIATION PRINCIPLE AND SEPARATION THEOREM

For a Hamiltonian operator'1ﬁ? which is bounded from below,

a variational calculation gives an upper bound to the ground state

eigenvalue of 718. The variation principle states d< P >’AV =0,
where (ﬂ)Av‘is the expectation value of the operator y 2o
<ty W wa) | <] FH vy _ | (2.1)
AV v*y(dx) <YLy * )

Let us consider that the trial function ¥ is expanded in terms of a

complete set of functions (¢ } = {¢1,¢2,...}, which has the overlap

matrix A with the elements
Aij f¢i ¢j(dx) . (2.2)
The Hamiltonian is then represented by a matrix g{}with the elemeunts

o, - B (@) . (2.3)

In practical calculations the complete set {@¢} has to be truncated to

a set {¢ }n = [¢1,¢2,...,¢n} of a finite order, say order n, so that

ol .
v=) oo, . (2.1)
i=1

In order to improve our expectation value using this finite discrete

3



<e the variation theorem. Tor an expectaiion value of an
operator bounded ivom Lelow, this variationa: technicue gives an upper

bound to the eigenvalue of the grouad stac.. Upper bounds co the

M ~

excited states are estimated chrough Rav itz rocess oy the

expansion of the trial Function in the form of (2.4).

Denocing thc column vector of coeificient C, by C, and the
i
\ ! . :
adjoint of C by € , ong can .oite an ecuilvalenc cguation to (2.1)

in terms of matriIx novation

~+ N 7
{] e
,

i o ‘
<F v, = - (2.5)

5

Varvine the cocvfficients C, and applying the varviation principle, one
o i 1 t >

obtains

LoGH, -0 e =0, (11,2,..0m) o (2.6)

The roots El’ E, o) En of the associated seccu

det {3 .. -EA,.) =0 | (2.7)
. : . Y . ..[6,10,11]
give the upper bounds to the n lowest cigenvalues of v in ordoyw ?eT .
If we introduce a projection operator ¢ associzted with the
truncated set (§ }n’ such that

. =g, (i=1,2,...,n), (2.8)

and characterized by the relations

AP n nt N . L
g = e, @ = &' and Tr( (:),x) =, (2.9)

w1 w ) ‘
The symbol ¢ applied as a superscript to un opueraler or Lo
a matrix denoteyn its ilermitlaa adjoint.




=40

H

then ¢ defived by

sives elgenvalues il’ E,, «..; and E_, which ure egual zo the roots of
- is

the secular cquation {z.5;. Hence (2.6) can be replaced by an eigen-

value equation of the Zorm

A0, e eadh - \ X
9’9;‘ Ui =E T Ui, (13,2, ..,n) , (2.11)
with
<. = U, .
e |

Since ’f’enﬁ'n = gRrFHR {2.12)

J‘ A A - I3
it is possible to diagoralize the I aud A matrices simultancousl
&

ooy

by a unitery transformation which icaves the roots of {2.7) unchanged.

P

£

Therefore any theorem or property related with the roots of {2.7) does

not depend on the choice of the basis as long us the tasis spans the

sane space. Let us further introduce an additional function ¢n+l to
3 o . S = 7 ) ; A [
the truncated set {¢} , so that {¢]_,. = @ 30,5 0ee.t ,0 .1 and on
n T L L & o nrl
asgociated Hermiticn projection operator ¢ characterized by the
relations
n+1 & a+l 1 k17 ntl e
(9 o+ v s & = & s ’j_‘r( & j n¥+l J
A
(2.13}
¥ n ant -t )
Swtlgn o= = 0" aas Sty o= i .
. il okl
- 2o wdlo, . .
They defincec 5y
K :',‘ﬂ""'l < n"l': ,P" Ry H+l I3

n
Q

P e {(2.1%)




Ch

will have ntl eigenvalues. For the simplicity of notation, we will
sometimes use m for nt+l in this chapter.

It is interesting to see how these upper bounds given by the
variation principle are improved by enlarging the subspace in which
the trial function ¥ is varied. This effect is qualitatively explained

w[10,11]

by the well-known "separation theorem , which states that the n

eigenvalues of i?n are upper bounds to the n eigenvalues of j:Pin

order from below, and the eigenvalues of Jﬁfn and J:fm satisfy the

following inequality:

<
El < h

<E, & £E £€h £E

1 2 T n n ntl , - (2.15)

where hi denotes the n eigenvalues of 7ﬁfn and Ei denotes the ntl
+
eigenvalues of jifn 1.
Let us now study the separation theorem in somewhat more detail
. . . . :ﬁfn
in connection with the degeneracy and the common eigenvalues of
o+l . .
and since they are closely related to the asymptotic behavior
‘ . . e . [8,12]
and the lost eigenvalues in the partitioning technique .
In the following, for simplicity, we will work with the ortho-
normal set of (@ lmo
m 5
Let us consider a matrix [H] with the matrix elements of the

form
Hij =<¢ifﬂ l(bj), (i,3=1,2,...n,m) 5

. m . .
and transform the matrix ) by means of the unitary transformation |

-




where {) is the n-dimensional unitary mitrix consisting of eigenvectors

. *
of 00". Then we obtain a secular equation of the form: 2
" - .
4"€mmE - le va e an
Vin hy-E 0 -
V‘2m 0 hz-E . =0, (2.17)
v h -E
j om n
where
: o n .
v = i; 3 (k=1,2,...,n),
= y¥
and Vkm V’mk .
Denotin V2 = V¥ .y
& mk  mkmk

one can express {2.17) by the form

(H__-E) Tr (h,-E) ~ }: [7T <h ;B ] =0 (2.18)

=
Defining a continuous function Y(£) differentiable to any order by
n 5 n .
YE) = (K __-6 T(h -6) - Zv L0871, (2.19)
k=1 m i=1 1 -
iFk

(2.18) states that m eigenvalues of 0™ FLO™ are the m roots of Y(£):

Y(E) = (Hmm-E)i:Ti;(hi-m—l;vmk[ 'i\')(h -E)] = (2.20)
. =1 |

X2 st fe o~
Compare with (5.20).



2070 .
Let us assume that the eigenvalues of d%t are arranged in nou-

decreasing order

then the behavior of the function Y(£) is conveniently explained by

considering the various possible cases.

mk

different from one another.

Case (1). None of the elements V . are vanishing and all the hi are

In this case, from (2.20) we have

n
= - 2 -
Y(hl) Vo1 ;E; (hi hl)
o n
¥(hy) == Vo, izl(?i’hz) (2.21)
(i#2)
- n-1
Y(bn) T an ;E; (hi-hn)

it is seen from (2.20) that Y(hl) < 0, furthermore the sign of Y(hi-l)

is different from that of Y(hi). Hence, there exists at least one real

root between Y(hi-l) and Y(hi). We also note that

184

Y(-%) El}r_r_xwlﬁm- é liglihi—ébo

(2.22)
' 0 > 0, if m is even
¥(+°) £ 1im (-1 H - €] [n, -]
&t i=1 < 0, if m is odd.
Since the signs of Y(-%) and Y(hl) are different from each other,

there exists at least one root which is smaller than h1 and in like

manner the different signs of Y<hr) and Y(+») guarantee that there




exists at least one root which is higher than hn.

Furthermore (2.19)

cannot have more than m roots. The above reasoning gives the following

separation theoren.

Theorem 2.1. If none of the elements of V

C are zero and all of the hi

are different from one another, (2.19) has m distinct roots satisfying

the inequality,

El< hl< E24 h2

K enee

. <E 4L4h <E
n n m

Case 2. All of mG are nonvanishing and some of hi are degenerate.

(2.23)

In order to facilitate our discussion, we will adopt the nota-

the ith distinct level in order from below, so that the following

\

relations are satisfied:

1= 2= = pl 1::
hl hl . ee hl <.h2
where
1 _ 2 _ Pl
hl = hl’ h1 = h2, ceey h1
. Y/
2pi=n.
i=1

Then (2.19) will have the form

¥(£) -—;[ﬁ&hi-f)(P U (H,00 Tzfghi-éi)—

where

v2,

3
=3' ™

i=3'

i=

g p/
2 1
W T (n,-€
il mk (%;l( L %]

(2.2

(2.

. P . -
tion hi 1, where the superscript Py denotes the degree of degeneracy in

~y
<



"10

with 1 for k=1,
j' = k-1
DR R N for k 2 2,
= (2.29)
Py ’ for k = 1,
" = k
}:1 Py ) for k Z 2,
i=

and (2.20) takes the form

A (B;-1) Lo
1_T (h:-E) (FC E).Tfl(hi'E>‘ P {‘IT (h;-E)}1=0. (2.30)
o A= i=
' (1#k)
The difference between (2.20) and (2.30) in their form is that (2.30)
has an additional factor Jfl(hiéﬁj(pi-l) and hi remains as a root of

(2.27) with the degeneracy (pi-l). We can use the same reasoning

applied to (2.19) to Y(E):

= Y(z)
-1 2.31)
and obtain the separation theorem of the form
1,.1_.1_ < o(P1-1) _.p 1 1_ .1 _
E14 hl E2 .o E2 h1< E3( '”<h2 E2£ cee
2.32
B L2 g (2.32)
2£+1
where
Pr-1
E1 = El’ E2 = Eé, .v.y E, =E > E = El ees, ete,

P, 2 P+l 3°?
It is seen from (2.32) that the change from FL" to 'f/e.m

reduces the degeneracy of each level by one and Jb(m has non-degen-

erate roots between the degenerate sets,
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Case (3). Some of mG are vanishing and none of the h; are degenerate.
If an element, for example, ij is zero, we can write (2.19)

and (2.20) as

Y(c)'—= (hjuz)[(ﬁmm £) =1 h -E) - f V _U (h E)}]
(i7)) L)) (m Lt (2.33)

(8;-B)[(H oB) 'n' (h, -E)- 21 2 { I G B3] =0 (2.34)
(7)) (KE3)  (1#k, i#4)

In this case the eigenvalue h, of ﬂn remains as an eigenvalue of ﬁm.

3
n %
This is due to the fact that §  and i:Z}lUij ¢4 are non-interacting with

r_espéé’t; to- }e . Since

'f(a) - Y(&)/(hj- €) (2.35)

has n distinct roots as discussed in Case (1), Y(€ ) has m distinct

roots if the jth root of Y( £), which is located between h, . and h

j-1
is different from hj’ and the following inequalities are satisfied

ek

according to whether the jth root of Y( £) 1is lower or higher than h_:

j.
= ®
E, < h1<E2...<Ej<hj Ej+1<hj+1<..j+2... h <E_, (2.36)
or
( = o0 e L] . .
E)j ¢ by < B, ... <E; hj<Ej+1<hj+1<Ej+2 <h CE_ (2.37) .

If the jth root of Y( £ ) happens to equal to hj, then one degeneracy of

the level h, is added and gives the following separation theorem' :

b

El<h1<E...E LE,. =h

(2.38)

The above discussion can be extended easily to the case where more than

qne mG is vanishing.
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Corollary 2.1: Degeneracy may be induced in the level L  in the spec~

3

trum of AHm only when the corresponding ij’is vanishing.

Case (L). Some Vox 8re vanishing and the corresponding h, is degenerate.

This is the combined case of Case (2) and Case {3) and (2.27)
and (2.33) have to be considered. In connection with {2.27), we can
consider two different cases; one, Wik is vanishing, and the other,

o

WS is not vanishing. 1If Wi

ok vanishes, for example, one can write (2.27)

y

as

£ )
. (n - 1_y(P;-1) _ 1
XE) = (ny-&) [ TT (ug-) "1™ [(FC e T (hp-e)
(i4)
2 )
2 1 ,
3 o] T o-0}] (2.39)
() (1F0,183)
and, as one has seen in the discussion of (2.33), degeneracy for the
level hi will remain and may be increased by one through the change

from 1{“ to ?fm; and if Wﬁ

K is not vanishing, then one can go back

to (2.27) and it reduces to the Case (2).

The four cases discussed above give a lucid lock at the sepa-
ration theorem in connection with the degeneracy.

Since (2.39) is a special form of (2.27) or (2.33), in

Chapter III we will not consider (2.39) separately.




CHAPTER III

BRACKETING FUNCTION AND FIRST ORDER
ITERATION OF EIGENVALUES

Using some of the equations derived in Chapter II, we will now
introduce a function f(é,) called bracketing function. Only the eigen-
values ofJﬁPm different from those of j:ﬂn are bracketed consecutively
by use of first order iteration.

From (2.20), for each root E of Y(¢ ), one obtains

Zvﬁk ﬁ (h -E)]
1“;m - =X - (izk) (3.1a)
?F;(h -E)

for the case that all roots hi are distinct and all mG are non-van-

- - . . n
ishing. In case there are degeneracies- in the spectrum of 7%f one

ﬂ J
o - B = (i) (3.1b)

T (h,-E)
i=1 *

and for the case ij vanishes, one has, from (2.35)

bei

R Ty(h-E)J

k=1 .
%mm -E = (k#1) q(lfk 1#]) (3.1(._)
T (ni-E)
1#J)
i3

|
|
obtains for the roots of ¥(€ ) as defined in (2.31):

(




Th

We note here that (3.1b) does not indicate the degree of degeneracy of

hi and (3.1c) is independent of hj(the corresponding Vﬁj is vanishing).

In the later applications of (3.1b) and (3.1c) to the iteration pro-
cess, where ¢m is the reference function of a one-dimensional manifold
one has to note that there is no information about the degree of degen-
eracy nor about the eigenvalue h

corresponding to a vanishing ij.

J
(8]

In this sense, the eigenvalue of hj is lost . With these
facts in mind, we will primarily work with (3.la). One can write

(3.1a) in the form

E=f£(E) (3.2)

for an eigenvalue E, where the function f is defined by
2

\Y
_ mk
(€)= H_ - k§1 Oy (3.3)

for the continuous variable €. Since £'(§£) <0 :

n 2

SE(E Yy Ve
SE - cEToeE <o (34

(8]

€ and £(€ ) will bracket at least one eigenvalue E'~?. 1In this sense,
we will call £(£ ) a “bracketing function."
It is interesting to derive the bracketing function by use of

the partitioning process and we will introduce Ldein's[8’12]

develop-
ment of the partitioning technique in terms of an operator formalism.
Let O be a self-adjoint projection operator which defines a certain

subspace S( ) of order g in the total Hilbert space, so that
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*
62 = &; (9'-’. = & (@) = g 3 . (3.5)

The orthogonal complement to the subspace S( () is defined by the

operator P = 1 - @, which satisfies the relations
2 _ T = = ,
P° =P, P'=P and @P=P& = 0. (3.6)

Let us further introduce the operator T = T(£) by the

definition
T(E) = Pla- @+ R(E- )P, (3-7)

where 0 # O is an arbitrary number. In the following we will often

use the symbolic notation

ey (3:8)

It is seen that T fulfills the following relations:
P(C - ﬁ)T':P 2 (3-9)

GT=T6"=0 . . (3.10)
Let us now consider the operator £ defined by the relation

n(e)=0+r(e) o . (3.11)
Using (3.9), we obtain the identity

P(AL-E)LL = P -E)0+ P[H-E)THU = PHO «PFH O =0, (3.12)

*3In practical applications of the partitioning technique, we
often utilize the bracketing property of the first order iteration pro-
cedure. In these problems the choice of an arbitrary subspace s(&)
has some importance in connection with the convergence property of the
iteration method. 1In this sense for g = 1, we will call the subspace
S{(&) a one-dimensional reference manifold, and for g2 2 , we will
call it a multi-dimensional reference manifold.
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for all values of & . Hence we have

(H-6)Lr= (O+p) (£ -E)r = (L -E)O-
= O(H-E)(e+1#0)
= gF+HrH-0)o .

If QL(E)® is an eigenfunction of #€ with an eigenvalue E, ¢ has to

satisfy the relation

(# -E)x(E)}p =0 , (3-13)
or

EOY = &(ﬂ+ﬁ.r(E)%)o’¢ . (3.14)

This is the necessary and sufficient condition for E to be an eigen=

value ofJLK. Let
o = f: [6,><8.1 (3.15)
1:1 .

with

20,10> = 4,

Then the condition (3.1k4) gives
. .
Z(#{ij—EJij) <gi8>=0, (i=1,2,...,g) (3.16)
j=1

where -j:C(E) s H+ ﬂT(E)d‘f{ (3.17)

)

£ - <o,/ lo, >



From (3.16), we see that E has to satisfy the secular equation

ﬂil'E f‘?le cee A

]
o
-

(3.18)

! #, .. H-E

g

and further P cannot be arbitrary if Tr(&) =g > 1, because the com-

ponents < (bj[(b > must be eigenvectors of ’sz(E). We will work with

_ (3.18) in more detail in Chapter V in connection with the multi-dimen-

sional manifold.

. 1
Let us now define an operator .

' = pElr . (3-19)

and its eigenfunctions ‘1':'[, so that

Hy, = hiY; (i=1,2,...,) (3.20)
then |
© |y'><y!|
T(E) = gl —('é—'_—h—:')‘ (3.21)
— o viscy! £
LhE) = H+ % A Y7 <Y (3.22)

E - b,
= 3

For the case g = 1, one can put & = l‘?)(‘?l, with < @] 9= 1, then

(3.16) reads simply

(Fy, - B<Plo> = o (3-23)



Assuming < PJ¢g > # O, one obtains

o]
1

{e]FC)@>

1 R+ KTy 12> (3.24)

(P18R195 + <P | T FX1PS

The introduction of (3.21) into (3.2L4) gives

2 YOI R
B=(Q|R|FD +;,<Q‘?§\Efﬁ)‘ | P> 5.2)

If we put
d Hm=<o R 10>
an - ’
v ™ e YD
then it is seen that (3.24) is of the same form as (3.3), which indi-

cates that the function £(€ ) defined by

HE)= LRIRIB> + (IR Ty te |@> (320

is a bracketing function of E.
The first order iteration, using this bracketing property, will
be convergent if ‘éé%ﬁ—)‘ < |, and will be divergent if lag%élb i [12].
In this connection, the choice of the reference function is important.
In the treatment of a Hamiltonian ﬁ which can be writicn as

° I3 - . -
the sum of two terms, ﬂ" ﬁ + V, it is convenient to introduce a

reduced resolvent To and a reaction operator t through the relations:

P o
To(e) " &= #°) (320

t(E£) =V + VT( )v QEPRERY

€
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However, practically, it is often difficult to work directly
with the reaction operator t(€), and we are obliged to develop some

method which gives an operator t'(€£) characterized by the inequality
.x.
e'(E,) < t(e,) (3.33)

Then (3.32a) and (3.32b) are replaced by

R

QIR >+ <Py e )19, (3.3%)

m
[t}

L ELPTHOTRS + <92 DI, (3.35)
and we have the following inequalities:
EN<EKECE : (3-36)

A useful way to achieve this end is to introduce the concept of the

nl6]

"inner projection'"' - as discussed in the next chapter.

M;AS B means < YJAJYD & (V¥[Bl{Y> for every ¥ in the common
domaia of A and B.
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The operators T, and t will hence depend on €. Using (3.26) we will

try to find a practical method for obtaining lower bounds.

By using the relations TV = Tot and T = T, + TotTo, Lbwdin has

(7] g

derived the following transformation for the operator ;&P

D)
p—

A= R RTH= (RIRTHI 1+ 8T (1 + TR (3.2

Substitution of this expression into (3.26) gives

f(e)= {@|R1P> + AR \Zf> (3.30)
= (FIRNI® + (LT
‘where ?3(‘_*'11?{0)?

In connection with the solvability of the SchrBdinger equation
o I e B . .
ra ?p =E 9, it is convenient to take qp as a reference function,

since for this case (3.30) simply reads

£é) = E" 3+ (Pl V+ VTV | 3%
= E° +<49°| XL P

(3.31)

In principle we can obtain the upper bound gw)to any desired

accuracy and by use of the bracketing property, (3.30) or (3.31), we

can estimate a lower bound &1:

- = = 3.32a)
£, =F(E.) =KF|R"Je> +<FlLt(esx1F, , (

£ - fle) = <Felactigry +L§7) ten @y, B3




CHAPTER IV

THE ONE-DIMENSIONAL REFERENCE MANIFOLD
AND LOWER BOUNDS
. 6,7
L6wd1n[ 7] has developed a method for the estimation of lower
2
bounds to the energy eigenvalues of the Hamiltonian 1£P== )%p'+ V. In
this method, in order to avoid the ordering theorem of the "Intermediate

n[l?); 1)‘]’]

Hamiltonian the bracketing theorem as well as the concept of
"inner projection" is used.
Let A be a positive definite, self-adjoint operator. Denoting

the eigenvalues and eigenfunctions of A by Oﬁ_and Ui’ respectively,

one obtains the spectral resolution
A= };_:a,ilug( ul o, (k.1)

with ai > O.

A
Let us further define an operator A® by the relation

Dt

A7 = Za{-- | u, > <Ui\ ; (L.2)

i

then the "inner projection™ of A, A', is defined by
Al = a2 Q" A7 (L.3)

n o, f s . . . .
where Q is a Hermitian projection operator on a linear manifold Fn’

which is spanned by a set of linearly independent functions,

£ = (£ ,f £ ). (k.4)

1’ 2,...._. a
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Denoting the adjoint of £ by

f-*- = f * F] (2‘;'5?}

*
£

L n )

one obtains the corresponding metric matrix

A= f£f =<1 )

(4.6)
A typical element of A is defined by
Dy = < 'Fn | ‘FL> . (L.7)
With this notation one can define a Hermitian projection operator Qu by
o= £t fT = E> ATCE)N,
with the property

n.In n n+ n

QQ =qQ, Q =Q and Tr(Qn) =n , (L.0)

Then (4.3) will have the form
Loy o & .
Al = Ai’“ﬁ/ﬂk<£lA‘-' . (4.10)

If we incorporate one more function, say fn+1’ into the set ﬂg and

. . okl ‘
dcnote the corresponding projeciion operator by Q' with the propevty

+
. . nt .
Qn+1Qn+l - Qn+l’ Qn+1 - Qn+1 and Tr(Qn 1) = o+, (4.11)




[91]

then one obtains

n+l n n.n+l n

Q Q¢ =Q0Q =Q
Equations (4.9), (4.10) and (L.11), together with the relations

+
anann;_QnQnao s

n+l)+ n+l)

(1-Q (1-Q =20 ,

n+l

act
Q1™ (@™ 1Q®) 20

give the inequality

or

1 1 3 <1
0 £ AZQUAT £ AZQ"TIAZ £

{(4.12)

Thus, by enlarging the space Fn’ the "inner projection” A' approaches A.

In the following it is convenient to introduce three more mani-

folds é}s (gl,gz,.'.,gn), b= (hl’h2""’hn) and ‘ﬁs (303,00

defined by the relations
X 7 L 1 ' B ¢
£=A2g, T=47h and jE=A2(£-T{°)j).

Substitution of (L4.16) into {4.3) gives

A' = Al AT A
with A= <Flal 9>
at = Jhoas<hl]
with A= <h|ath> :

5]

)
n’

N
g
.
el
[G2N

LN
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and A= (E-FEO55 AT (e TR (h.21)
with A= {Gl(E-5 AP (e- D 5D (4.22)

The "inner projection" in the form of (4.10) is called by Ldein[T] the
"standard inner projection" whereas (4.17) and (4.19) are called the
"Aronszajn projection" and the "Bazley projection," respectively.

Since the "inner projection" of the form (4.21) was first introduced

by Ldein[G’lsl, we may call it the "LYwdin projection." For conven-
ience we will also call the manifolds £, 3) , I and j} the "standard
space,'" the "Aronszajn space," the "Bazley gpace" and the "Lbwdin space,”
'respectively[YJ.

According to (3.32a), the two quantities Eo and 61, which

bracket a true eigenvalue E are connected by the relation

E, = LTI $°) Y +(TF| X (2|,

where éo is an upper bound to E and E] is a lower bound to E. Further~

more if one can evaluate E:i which is emaller than 51:
‘e . L.
€, £€ <EcE (4.23)

then &i is a lower bound to E. This can be accomplished by introducing
the operator t' which is smaller than t. If t is positive definite we

can always obtain t' by means of an 'inner projection,"

t! = t%Qnt% . (k.24

Lﬁwdin[7] has shown that, even if t is not positive definite, we can

form t' such that t' & t for a positive definite perturbation V.

=~




Consider an energy level of £f whose upper bound 50 satisfies

the inequality

£, <E, : (4.25)

where E;_ﬂ is the (p+1)th eigenvalue of £P° from below. Then the

choice of an Aronszajn space for the inner projection of V so that

V= VI9OKYIVIgIEgIV,

is sufficient to satisfy the inequality t'( 80) £ ao),

(4

where t' = V' + V'V’ (4.26)

)
VIgxglv-vTL vigi{glv ,
if g includes all the lower lying unperturbed eigenfunctions ‘{’z with

o . . . .
respect to Ep+1. Hence the minimum requirement for 2 is given by

9 = {\y‘l’,wg,...wg} . (%.27)

This choice of the manifold is conveniently applied to the probiems

where Vg can be expressed. in terms of a known finite number of eigen-

functions of %0[16].

One example of this case will be given in Chapter VI.

[17,18]

Bazley and Fox have discussed the similar cases in

connection with their special choice of linear manifold.



CHAPTER V

THE MULTI-DIMENSIONAL REFERENCE MANIFOLD
AND LOWER BOUNDS
The main difficulty in the use of (3.34) or (3.35) for the
calculation of lower bounds is that, for an upper bound Eb greater
Z of JQLO, the generalized reaction

opertor t(Eo) is not positive definite. Even though we can circum-

than the first excited state E

vent this difficulty by use of (4.26), its applicability is rather
limited due to the appearance of the reduced resolvent To in t.
These two difficulties and the ordering theorem are avoided by use of
the multi-dimensional reference space in the partitioning technique.
The general outline of this partitioning process is introduced in
Chapter III.

- ~
Let us consider the operator #{ and #X defined by
0, = + T, EL, (5.1)
and

Hie = OHe? > (52)

where O is a Hermitian projection operator defined in (3.5) with
—— "
Tr (&) = g. Since T(E) is a function of § so is ﬂand 7{, and g eigen-
v
values ofjkf(&) will change continuously with £ except at some singular

points. At this point, it is convenient to comsider an eigenvalue

26
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problem of the form

ey, = €9, (1=1,2,...,8), (5.7

It is seen that (3.14) is a particular case of (5.3) with both £ and
€ ; equal to E which is an eigenvalue of F€.

Using the property of the complementary projection operator P:

P=1- &

we see that
P =0
ﬁ(a)

and any fuoction in S(P) *3 is an eigenvector with an eigenvalue zevro
for all values of £; this case is of little interest in connéction
with the partitioning technique, and we will confine ourselves to S(&)

so that

Pp. = 0. (5.4)

i
Therefore for eigenfunctions of #€ which are in S(P), this partitioning

process fails to give the corresponding eigenvalues.

"
Theorem 5.1. If £ is equal to one of the eigenvalues of é¥}£)’ éi’
i.e., Gi(f) =&, then €, is an eigenvalue of .

Proof: Starting from (5.3), one obtains

;ﬂ?(éj)@i = Ei¢i ’ (‘5'5)

*5It is convenient to refer to the subspace associated with the
P as S(P).




e.o%

i

'

o+ - Teen R )6 P

OH(6+Trent )P = €6 () + Treo S 9{3;/

5.0)
G (K- e(+ Tren L) = O. (5.0)
Since
P(E-€)(o+ Tren) E60-D = O, by (3.12),
(6 +EI(H-EN(o-+ T ¢ =0,
or (‘Jff-’&",;)(@"*‘ 'T(e,.)'f’e G) CP‘ = 0, (5.7)

this indicates that (& + 'T(e‘-)ﬂ‘ GL)SE is an eigenfunction of £f
with an eigenvalue éi. Q.E.D.
Furthermore from the relations (3.17) and (3.18) there follows:

Corollary 5.1. If E is an eigenvalue of ﬁ, but not an eigenvalue

”~
of P#f P, then E is also an eigenvalue of £f(E).
Nt
In Figure 1, the relation between the eigenvalues of ’f’f}( £)
and those of ﬂ are schematically illustrated and in order to explain
this figure we will discuss the asymptotic behavior of the eigenvalucs

o~
of LP( €) as £ varies from - ® to ®, From (3.22) one obtains for
o~/
He).

i':(/(a)= o e
- & (K + R'T(g)if&)&
mo (e + ¥ RIEHENH
< é‘ CE,“’"}’L\.) ) ’ ( (\)

7/
where £f=pLf P and I,F"]fi = hi‘lf)f- .
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Fig. 1. The graphical construction of the
eigenvalues of [H.

El’ Eg, E3’ Eh and E5 denote the eigenvalues of JHi;

and hl’ h2, and h3 denote the eigenvalues of ?ﬂbb;

and e, and e, denote the eigenvalues of - The
author is indebted to Professor P. O. L¥wdin for
showing this diagram.




It is sometimes more convenient to consider this partitioning process
in terms of a secular equation of a finite dimension and later extend
this to the infinite Hilbert space to match with the operator formalism

shown above.

If one uses an orthonormal basis Lf }g = {¢1,¢?,.--,¢g) in
expressions (2.5) and (2.6), one obtains the matrix equation
Hc = E C (5.9)

with r 2 <¢k\9€(’(¢£> , (5.10)

and <¢kl¢,2>= Jkﬂ (5.11)

! .

Let us now "partition" the basis into two subsets (a) and (b) and
denote the associated subspaces by S(a) and S(b), respectively. The
matrix M) and the vector € may be written in the form

Haa &ﬂdb : La

H-= =1 X (5.12)

and instead of (5.9), two equations resulf:

Haala + Hap €, = ECa (5.13)
HpaCa + Hhpvey = ECH . (5.14)

If the eigenvalue E of W} is different from the eigenvalues of I}Ubb’

(5.14) gives

C, = CELn ~Hhp )" Hua Ca, (5.

W
—

\Ji

~




Substitution of {5.15) into {5.13) leads to the relation

-t r:.".,éﬁ\
Flaa €Ca = E Ca, (5.16)
where

D-:f’aa."' Haa + Hap ( E Lo — Hen)™ Hpa .

5.17)

~
I

If the inverse of (E llbb -0 bb) exists, (5.15) gives the relation
between €_ and ¢, and if (5.16) can be solved, ¢, can be obtained by
(5.15). However for an eigenvalue of H which is equal to one of the
eigenvalues of Uﬂbb’ this partitioning device fails to give the eigen-
Afunctions as well as tﬁe eigenvalues, and in this sense the eigenvalue
is lost (see the statement after (5.4)).

Equation (5.16) has exactly the same form as (5.3), with the
understanding that S(b) is extended to the Hilbert space of infinite
order orthogonal to S(a). Transforming the matrix [} by means of

the unitary transformation

. e

where the matrix Ubb is composed of the eigenvectors of -0 bp? One

obtains the equivalent matrix THI' of the form shown in (5.19)

s f Haa ! Hal,

e _nfiia.i: 12 \

W

. 1 _f ) o P o
U:v Hea U n‘ﬂbbUH,/ \ THya! B“U’bb )
' (5.10)



{3

or s
Vs i
D Haa ! 0 ‘e
s e e e e e e e
- } h' o ' ’
Hpa , ° e (5.00)
]
where h , h,, ..., are eigenvalues of be' From this matvis &0
one obtains the equivalent form of {5.17)
—_— ’ / - -
[Haa = Haa + Flia( £ Loy ~ M) oo, (5.21)

where the matrix (E ]lbb - })M{}'bb)"1 has the diagonal form with an
element ———————5-1 for the ith element. Equation {5.21) is equivalent
(E - hl ; X -

to (5.8).

It is seen from {5.8) and (5.21) that there are two types of
asymptotes for the eigenvalues of {?(&)(or @da(é)) corresponding to
the eigenvalues of OFfO (or ﬂ—ﬂad) and PLFP (or be), the former is
horizontal and the latter is vertical. The number of asymptotes of
each type is given by the number of distinct eigenvalues of & F & and
P PP, respectively. However the common eigenvalues, if they exist,
of £F and P£P P are climinated here.

~

In order to examine the behavior of the eigenvalues of 2%”(&)
(ox @a(ﬁ)) qualitatively, an example is cousidered where the dimen-
sion of S(a) is two and the dimension of S(b) is three. The operator
formalism and the matrix formalism will be used interchangeably

according to convenience. Consider the non-degenerate case of Haa

We assume here that the unitary transformation(5.18) is so
arranged that h1 < h, < h
ol .

510;' .




and denote the eigenvalues of &ﬂaa by e 1 N

those of &ﬂbb by hl’ h2 and h3, respectively.

and e, (with e, < e_.) and

Assuming S{a) is spanned by ¢, and ¢, and S{b) is spamncd by

¢3, ¢h and (65, (5.21) has the form

ﬁ:uaa(e) = Haa + U’ﬂ;b(e 'nbb - D“H;b)_l H‘;a (5.22)

with
U H A
0 =
aa

and

o[ e 1 i
’ ’ -] . &~ S’e.:., € - R»:*'
Hd.b (elbb"Hby) Hbd = ,Z;a , , , ,
N O R
E- s e-i ! T
(5.23)
Note that h1 in Fig. 1 is related to %;J by
h, = %33, h, = F,, and h = ft’fﬁ : (5.28)
Defining
' ¥ t "l ' SRS
H o) = Hp(E Dy, - H)  HL, (5-25)
(5.22) reads
M. €)= H, + M (€. (5.26)

In what follows, the horizontal asymptotic behavior of

the

eigenvalues of l}ﬂaa({_') is discussed in Case (1} and Case (2), whereas

the vertical behavior is studied in Case {(3).



3h

For the horizontal behavior of the eigenvalues of mza”«:(‘ £) one has

Lo, Fige> = Haa (202 = Haw + (> & Haa, (5,273

e

. . 1
where (_g is a matrix each element of which goes to zero as E *

[13,14,6]

It is well known that if operators A and B bounded

from below have a common domain and satisfy the inequality
A<p , (5.28)

then the eigenvalues of A are smaller than the eigenvalues of B in
order from below. Furthermore, we can denote the inequality of the
matrices A and [B:

A< (5.29)
if every diagonal element Aii of A is less than the corresponding
diagonal element of B, of B, i.e.,

A ..< B, (5.30)

11 11

for every arbitrary choice of basis in that domain.

The character of H"Haa(eﬁ) as a function of £ is determined by
U—ﬂ'aa(a). Since the numerator of every diagonal element is greater
than or equal to zero, for an arbitrary basis chosen in S(a), the sign
of each diagonal element is determined by the sign of corresponding
denominator.
Case (1). - oo<£<h1

For this case every diagonal element of I’ (&) is negative



for an arbitrary choice of basis in S{a}, and the inequality
(&) < M, (5.31)

is satisfied., Furthermore every diagonal element of 6%? a(E) for an

a
arbitrary choice of basis in ${a) becomes smaller as £ increases its
value in this range. UConsequently, the eigenvalues of ﬁﬁ(&) are
decreasing monotonically from their corresponding horizontal asymptotes
e and e, as one increases the value of £. In this sense the hori-
zontal asymptotes are upper bounds to the eigenvalues of Eﬁ (&)

aa'

Aonr £% hy.

Case (2). h5<C<+m

Pl
For this range of & , every diagonal element of u1ga(a) for an
arbitrary choice of basis in S(a) is positive, giving rise to the

inequality

- : 520

Dnaa(s) > Maa ) <)-D‘-)
and the eigenvalues of nﬁga(S) are decreasingly monotonically and
approach their corresponding horizontal asymptotes ey and e, respec-

tively. Hence the horizontal asymptotes are lower bounds to the eigen-

values of D’Uaa(ﬁ) for £> h5.

Case (3). & approaches hk(ﬁ—*hk).

In order to facilitate consideration of this limiting case, the

operator formalism expressed in (5.8) will be used:

s o =0 (R +F TS (5.33)




where
5 IY;L)‘{‘Y;!

For generality, the dimension of S(b) is mot restricted but in the

present example, Tr(P) = 3. Rearranging (5.8) one obtains

| o RID R, AN
m(w"*f"[{ﬁ* 121 (£~ hy) J+ ~hk>K ch.
(ifk) (534

Defining the operator

ot G > <Y | K 6

-~ [ '_z,\\
Hy = (e- 1) ’ (5-32)

and denoting its eigenfunction and eigenvalue by ¢ and gk’

Sk P= £ @ (5.36)

one obtains

2le s ne -
- ‘ (531
b2 <9-(7f€h'fgd’;{bf«‘f)a(%iw{cx&'{(};ﬁf)69"1(E
I L |
CHIFH O Yy ,.
B [ : (¢ - hk) I - k] éE * (5.38)

Combination of (5.37) and (5.38) gives
OO T 0>
" [ Sk " (£ -h) ]

= ~
)

k=0,
or LR EE NS Y
b T (€ - hk) ‘ e




_ . ea 77 e
Therefore ﬁ:k has two distinct eigenvalues, zero and X d*t'* A Wi
(€ ""hra)
unless 0’” ‘i’k'= 0

! Is)
1f & £y x = 0, using the relations P° =P, OP = 0, and

PY‘k = Y'k, one obtains :
=[(-hel ¥, = [ERE—he] P¥e
[ (o+B)fr—he] B ¥
[?@ - h—;e] i\k;e, .
Hence ‘Y'k is a simultaneous eigenfunction to £f and PE¥ P with the

eigenvalue h Since the inverse of P(£ - )P does not exist for

K
€= hk’ the partitioning technique fails. Furthermore hk is no longex
a singular point of (5.34) and (5.35), accordingly there is no asymp-
totic behavior at & = hk’ and the eigenvalue is lost in this sense.
Therefore it will be assumed that 9%‘1"/1{ # 0. Under this assumption
there exists at least one non-zero eigenvalue gk' The eigenvalue §k

whether it is zero or non-zero, may be degenerate; however, one can

always diagonalize f:l{ in s(&).

In order to facilifate the following consideration, let the

k
subspace S( &) be divided“gzf into orthogonal subspaces S(@‘d) and

S(@l‘;) according to the two distinct eigenvalues of Ek’ such that

— 3 Lk el Ve
0% B = Fie O = Oa FikOn (&~ hg) o

<jké{ﬂ0-fﬂj}fé_> (5.10)
(€~ hw)
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and
k _ r
cg’b}:{k':j{h&t = @‘b ;*(3—‘& - o) (,« L1}
where
k‘. k e e 'Yt ® -
G=0u* O ’ Oo Cw = O Co g,

" R (s,
oot 6=0"  amd 0lp=00v= 0wt

Introducing the relations (5.40, (5.41) and (5.42) into (5.34),

one obtains

,5‘%@‘9[&(&”3}87@.
K L
- X (Gt B, I08 roka@ol v ola@OL  (5.k)

k.
t O'SGT(‘&) G-y |

where

= | ¥HCEHRR
Gey= X+ 2 T . )
(i#hk) _C E=h.) (5.14)

It is convenient to introduce the operators 4((&)3 and z?(é)b,

by the definitions, as in (3.7) "

k R ke : -l ool
Jeey = Gf[p-dl,, F oG- ey Ol Ga ., (s5.45)

I ) 1 2
,«ch)b =z 0’%[?0‘2— + (9'?%6"@0?4) !;;&"S‘Gl’vl O’y,) (‘5.&6)

where F is an arbitrary non-zero number.

In the following we will simply use the symbolic notation

e
’”Y(c) he Ca ol (5.047)
* [ 6 - é’(t-) - F\n‘}

—d

~
o}




fe
Crv ;

. A48
/"0(")\’ . { £- G ] (5.48)

In order to observe the asymptotic behavior of & FFfGas E approaches

.p ! .
h,, one can contract G F P with respect to the subspace S(@'g) and

S(O':): respectively, using (5.43) and (5.44}, one obtains (c£.(3.17))
—_ . |
. ha }e- ~ P ._‘[‘Q"
0‘?6@ &E =. (9}:“’;610_)(}‘k + oG dced, G(ed Oy (5509

vhere G, - c8Ro + o % Jcorn 3, (5251

aa ﬁ@‘;{o" 1 O'?::Q/g(g)b/&ied)"

As £ approaches hk’ Ef,k becomes enormously large, which makes the

operator efa(ﬁ) go to zero. Hence ome has the results

: — R . Ak R e et
b srE ot = ohacw oF

E_ak,& At
e e 2 ok JRAL TN R LI
. T - a =
,(vax (9.,& é}m @k = 0’« k. ({E — }7!'&) [

£ hin

These give the theorem that, if £ approaches one of the eigenvalues of

PﬂP, say hk’ where h, is not an eigenvalue of 'f‘f the n, eigenvalues,
v

k
b

k

where n, = Tr( @J‘;), of ©@ F¢ approach the eigenvalues of &1: G &

) 35 s
and the n_ eigenvalues, where n_ = Tr( G)a), of @ FC become iniinite

(al g ORI ERD
( £— he)

with the order of magnitude




In concluding the discussion in cennection with FPigure 1, the
way of estimating lower bounds to the ground state will be studied in

connection with (3.18).

Theorem 5.2, 1f E} is the ground state encrgy ol 7% and the cigen=

- . - . ~ 4 \ . 4 o

function of the ground state is not orthogonal te S{ &), then the
P

lowest eigenvalue of ;ﬁf(ﬁ@ is G-

s
Proof: By corollary 5.1, yﬁf(ﬁl) has at least one cigenvalue

i

which is equal to El' 1f one denotes the eigenvalues of i“/(ll) oy
e .
1 B,y <.+, In order and assuwnes that

4
o

~

then by the vaviation principle  uvne hos

where 11] is the greouand state cipernvaive of DA P Siuce the casus

where the vigeovaluvs of @7 are equal to the o

v
e

conva bues ol DA,
are excluded from considoration, oue may asusume ihab B, & hi L then

by (5.55)

Now consider

~ ~ 3 N y t : b S:( f‘.\.{'(. AN A ’ . ';;_
HE )= o R g ) =0 IR ATETE G o
i T Ee b (5.57)

o0

The term L :

in (5.5?) is negavive definite by (he

feequality dn (L.50) . thevetore if one consd




then
Pt P —~
“(c,) = H(E) < HEe) , (5.58)
and it follows{IB’lu] that
Patd
E, <& (i=1,2,.., Tr()) , (5.59)

. th % o .
where &"i is the 1 eigenvalues of 7QP(£). While decreasing & con-

~ -~
tinually from E, to E

" kel each 53 will increase in magnitude continuously,

and it will finally reach the point where ELk—l’ which is greater than

E

N

K-1’ is equal to &. Then by theorem 5.1, the &€ at this point (é==%{_1

~s
is an eigenvalue of #f, however £¢ Ek = El and this contradicts the

assumption that Ek = E1 if kK >1. Q.E.D.
One may assume that the Hamiltonian #f can be written in the

form
ZLf= M +vy

Al

o , ) - - . s
where FQF has known eigenvalues and eigenfunctions and V is positive

. s . ﬁo . . ) 1 P
definite. It is further assumed that has discrete energy levels
0
1

E'_é_.Eg_-’:...,

~
N
.
=,
-]

below its continuous spectrum. The corresponding orthonormalized

. o
eigenfunctions are denoted by Ti, so that

o

w——
~

T
.

[+
0 _ L0,0 O ¥ « =
ﬁyi BY, 5 < ‘l/i(‘lfj > d’ij .

If the projection operator in {3.5) is associated with the functions
o
b
Yi y
g
o O
Z ] >< ¥l

- i=1




the introduction of (5.61) into (3.14) leads to the form

Eod = 0(° +v + vTe)V)IO @, (5.65)

m

It is convenient to introduce the generalized reduced resclvent N and
the reaction operator t for the multi-dimensional reference manifold

by the relations

To(g) = Eszaqrb s (5.0h)
t(€) = V+VI(EW . (5.65)

Then using the oéperator identity

(.A-B)'1 ="t 4 A'ln(A-B)'1 s (5.05)
20
it can be shownLGJ that
eyl L, (5.67)

. -1 ,
provided V exists.
The condition which makes TO(E) negative definite will be the
sufficient condition for t-l(ﬂ) and t{£) to be positive definite. If
. = . o .
the variable & is below the continuous spectrum of HC with the
relation

QO (s}
3 3
E <£43+

x il (5.68)

theu To(é) is negative definite if one uses the projection opcrator

defined by

Q
4
M

[N
i}




[

L4)

where J 2 k. This gives
A [

t>» 0

b

P

A
N

)
Py
[

.

and by means of the inmer projection defined in (%#.2) one obtains
1 1
SR r\
eV o= te Q e s (ﬁ-;l}

so that

tE) = u(g) : (5.72)

In order to consider the bracketing property for an eigenvaluc £ of the
Hamiltonian 5%, in a nwlti-dimensional reference manifold, cousider

(3.14) and define a function £(§) by

4@{5@{4’” w%>&m>
CHtotg >

k\.

e

£(€)

N
U
N
-
[#S)

then
7.. AN G
delE) <9 j@'(c" (c Hyoley ‘
Sl = . 0. (5.74)
SE GUE
Troie com (5.7EY that for a nvenerle chosen e
It is seen frowm (5.74; that for a properly chosen vefvrence
3 NI . e o ot i fyeor e ol de b b
funceion ¢, which satifies (3.14), the bracketing theorem bolds .

. - s -t " . 5 NUE T
herice there will be at least one eigenvalue E of ¥ between & and ().

therefore if &  is an upper bound to the eigenvalue A and if both E
o PR 2
. o oo
and & are between two consecutive distinct eigenvalues of PELP R
o

then f(&o) is a lower bound to E:

£, = f(€) <E% £, (5.75)

The fivst order iteration procedure using this brackeaf:g properiy will

‘m

be convergent if ]gyr <1 and divergent if |—

X ) . S et .
/Note that the common eigenvalues ox?#ﬁ,and pof e, 4f
us E

exist, are eliminated,




» . . . Ea
Assume that Wl denotes the ground state eigenfunction of e
with the eigenvalue E1 and further assume that go, an upper bound o
E., is lower than the lowest eigenvalue of PHL P which is not & simul-
A

taneous eigenvalue of $€. 1f ¢ satisfies the relation
o
L < < E
P Co p+l ?

then the introduction of a projection operator of the form {(ef. (5.09))

- i
g = }: ( ‘1’2)( ‘H?l , (where g = p) (5.76)
=

makes the reaction operator t(EO) positive definite. Hence all eigen-

. ¢ . P .
functions of FL° associated with the eigenvalues less than the upper

y ¢

>

bound E’o are included in the set {YT,WS,...,YS,...,Yogn Let us
define ¢1 by the relation
= &y . (5.7
¢1 ¥, , (5.77)
where @ is given by (5.76). Using the definiticn (%5.77) and relations

(5.63), (5.65) and (5.73), one can write
£(&,) = <ol FO+ (g ey 1<d N7 (5.78)

For this case the relation in (5.75) may be replaced by

£,< B, < &, (5-79)
Defining 5{ by
£ = <o) KO+ N, > 1<t >, (5-80)

and noting the relations (5.72) and (5.79) one obtains the following

inequality:

' .
51”£1< E <& ) (5.81)




Since ¢1 is not known, one minimizes the operator 1Pf")

"o (o] ’ ’,
2= A (5.82)
in S(@) to obtain some value less than é;i .

Denoting the lowest eigenvalue of f{" in ${ &) by Eﬁ;, one
obtains

E1£€ . (5.83)

Then it is seen that E; is given by the lowest eigenvalue of the

Hermitian matrix

1
Ey +ty 1o ... tlg 3
!
4 [o] ' '
+ L] - -
o1 By ™t og
(5.84)
. . e . l
t t! EC + ¢t ‘
gl g2 ¢« e ;g gg /
Combining (5.79) and (5.33) one obtains
E” 65' ¢ T 5 /= 8‘—)
S T B \2-00

This method will be applied in Chapter VII in the estimation of the
lower bound to the ground state energy of two-electron isoelectronic

series.




CHAPTER VI
THE STARK EFFECT IN THE RIGID ROTATCR

In this chapter, lower bounds to the energy eigenvalues for
the rigid rotator in a uniform electric field {the Stark effect) arc
calculated using the method described in Chapter IV. For the inner
projection of the positive perturbation V, the Aronszajn space g?iﬁ
used, where chonsists of the eigenfunctions Yz of #€° and has to
satisfy the condition given by (4.27). The notation is consistent
with that of Chapter IV. The equation used in this chapter for the

calculation of lower bounds is (3.34) with t' expressed by {(4.2¢):
£1 = <FIRIG > + RIVIPHC g1V - ViVIGY L GWITy(6.2)

In a problem where V is a positive perturbation with a con-

stant coefficient K as a strength paramcter, one can write
v o= KU . (6.2)
For this case one obtains
) o o1 - ot o
£ = FIFI9> + p B i (6.3)

where

8

-(glu/K - Utrotl'(gw , (6.4

{F\v] P > . (6.5)

=
i

L&




e

If @ is an eigenfunction of »;,(0, then

i

F = @ (6.6)

The wave equation for the rigid rotator consisting of two mass

points m, and m_,, which are separated by fixed distance R, is

1

2 .y 2
rl 2 2 1 95,00, ay o (6.7)
————— Y W P = ‘
QMR?{;in 6 90 (sin 6 35) " sing‘e 3g° JY (8,9) * 5¥(e,0) = o,

where W is the rotational energy and M is the reduced mass of m; and

@2{ i.e.,
M= (mm)/(mpm) (6.8)
Let
-(g,8) = siln 5 % (sin 6 ;—6;) +;;1:2-; 83—2- , (6.9)
and
(MRCw)/5° = E° (6.10}

. . . . o,
where @ is the Hamiltonian in dimensionless units and E~ is the corre-

. f20]
sponding energy. 1If Yzm denotes the normalized wave function given by‘zo“

mfd

o ) )

fom T e ()

(6.11) |

where Pz(cos 8) is the associated Legendre polynomial, then (6.7) reads

simply

o(e,0)¥) (0,0) = E) ¥§ (6,8)




LB

or
w(e,(b)wz’m(o,m = g(gﬂ)g/z,m(a,w) ) (€6.12)

The rigid rotator of dipole moment u in a uniform electric

field F is characterized by the wave equation of the form

€y =Ly , (6.13)
with ' = w+ Kecos 0 ’
~ )
and K = (2uFMRS) /e . (6.1k)

In order that the perturbation V in (6.2) shall be positive definite,

we shall write

H'= - x , (6.15)
Vv =X(1+cos @) |, (6.16)

and
U=1+cosd . (6-17)

Then this division of # into an unperturbed and a perturbed part

gives
#H = H° +xu (6.18)

with

U Do . (6.19)




kg

For this case, the Schrddinger equation reads
[w{o,8) + X cos 0]¥(0,8) = E¥(a,0) . (6.20)

This equation is easily seen to be separable with respect to the vari-

ables ® and $, so we can write the eigenfunction in the product form

¥(6,8) = 2(0) $(0) , (6.21)
;o l T i
with 8 %(‘?)) =1 'é';) e” imd ; where m = 0, 1, 2, ...;
o«
- - m ] .
and z(v) = Z_}) ¢, P, {cos ) } (6.22)
L=

it . . .
where P,(@) is an associated Legendre polynomial.
b

Since the space with which we are concerned can be subdivided
according to the value of m, we can treat the problem separately for
each subspace. The normalized reference functien ¢ in (6.1) is arbi-

- -
7

trary; however, in order to make the first order iteration of (&.1)

. eionk©!
convergent, the condition

CTHRPITHT> < LP|¢D (

[ox}

.

n
(s
NS

must be satisfied. The left side of this inequality approaches zero
as K approaches zero for a fixed reference function only if ¢ is an

. . o - . .
eigenfunction of Jf ; therefore it seems reascnable to make this

_x.
8Except for the case m = Q, we have doubly degenerate eigen-
states, so we will consider only the absolute value of m,



choive for ¢ provided K is small. Thus in the subspace m, we have for

»th .
the £ axcited state,
4
o My oy I Ly 70N
= Y {0,4) : NN’V(Los G) e (6.24)
Ar ~AL

i S . o H . E v . AR PN m an
where Y,(0,¢¥) is the normalized “spherical harmonics' and where N)7 L8
o

7

1/

. < . - - . . ~ T AN e
{he normalization facter for the spherical harmonics Yg(%,W) given by

W = {(ﬁ“"”)!(:‘."yf"-‘} "! ] ((' o
j4 Lo(ftm) !

o

Lower bounds £ for the encrgy levels can be caleulu by use

1 L=

-~ /7

of {{.3) through (6.9) with &  in T obtained from a variation calcu-
0 0
. e, . T
jation. The Aronszajun space which satisfies the condition ol {(L.27)

P e arens . [y . , A
18 given b> (/}‘M (gl}ggl"'}b.iJ"')gn/ ’

. - 11‘ Cpoemi
wiih & = Yo l((,%) {(6.26)

o P - m e o
Pi = < gii Ul \(;2, > = <Xm+1"-l((1+bo‘s £ ,»[‘( ) > . (t......r,
Usling the recurrence relation
m )
(cos G)Pz = (2f +1) (f+1- m)1)2+1 + \j+m)Py 1R (6.28)

onve ovtains

1 1
(:+1 m)( .’)+1—;-m>ji.;fé + ( )\A/ n‘_, 5 (
(2f+1)(20+3) J arHi-1, 441 Tt -1 g (23+1)(2h- l)j Iyt~ 1,0-1 ;

;3i:|

therefore




o Teri-m) (g o
'(ji = L (?»k,"“*'l) 22+3) for i = [i2-m,
Sj =1 for i = J+1-
TR
» \@»(..L}/
B. = (}fﬁﬁn)(ﬁ-m) £ A
i | (24+1)(28-1) or T LT
Bi =0 otherwise,
[} 1 Lo, 7 -
and CRECI19Y = < YY) > = 2(4#1) : (6-30)
In order to have at least one non-zero qlement for 61’ as we
can see from (6.29), n must be at least as large as (f-m); ctherwise
& 1 = f{4+) , (6.31)
which is trivial.
For the calculation of matrix elements of {8, we cousider
= Y - n A
Bys <gil(J/K) mOUng) (6.32)
_— s 1 .32
Let lzi 'J?()Lgi (6.33,
P
= e (1 ++ coOs Q)Y Tasn
P PO wri-1 7 (6,34
(£ - ) 3
where
p= 1- [93gi=1 - ¥)><Y]
Using (6.28), we obtain
i+l o
= (6.35)
Fi L DK Ym}('l s \O J/)
K=i-1
!'
with ‘ )
S
1 ro(i-1)(i-Cmkl) 1%
D. = v o . s e L A Y Ao AV
i-1 LEo- (i+m-2) (itm~1)+K] (2item-13{2i+Pm=-3)J
=0 (if 7 = itm-2) {6.26)



1 .
b, = = 0 if § = itm-1) (6.37)
i [&- (itm-1)(itm)+K] ’ (

D - 1 i{i+om)
i+l € -(i+m)(i+mt1)] (2i+om~1)(2i+2m+1)

6.38)

et
N
~~

= G, (ifﬂ, l+leo

i

Note that the reason Di vanishes for certain values of i is that Fi is

orthogonal to Yo,

)/

Introducing (6.33) into (6.32),

By = <g l(u)le, > - g lulr, > . (6.39)
Then, the non-vanishing matrix elements of B are
1
B - -1 J [i(i+1)(i+2m)(i+2m+1)} 2
i+2,1 [(5 - (i+m)(itmtl)HK I itemt+l) (Rit+em-1)(2i+em+3) ’
[o]
e [ et e et
itl,i LK A& - (itm) (ditmti)+K) (€5 (dtm-1)(i+m)+K JJ
. 1
L i {(i+oim) }'ﬁ .
(@itom+l) (2item-1) ’
3 _ 1 i(i+om) ) 1
i,i K 1 (EO- (i) (i 1)K (Qirom-1) (2itemtl)] (* -{1Pm—~\l+va+%J
_ [ (i-1) (i~ l*ﬂin) ]
(50- {itm-2) (itm-1)+K} {2i+em-1) (21i+om-3)
i B ) (e
i-1,1 C - (i+m-1)(iFm)+K €, (itm-2 1411¢}%x}]
1
[ (i-1)(i+2m-1) ]Zj ]
(2i+em-1)(2i+om-3) >
ol
3 =[. -1 ] (1-1)(1-2)(i+mmm1)(i+9m-9)tm
i-2,1 (3 (itm-2) ( {tm= L+ (2i4Em-3) 2item-1){Qitemety ) .




Equations (6.29), (6.30) and {6.40) give us the necessary
matrix elements for calculation of lower bounds expressed by {5.3).

It is easily seen that

Bi+2,i = Bi,i+2 and Bi+ =3B .

1,i %114
If we change the Hamiltonian in (6.13) to
H=w-Kcos g (6.41)

we would expect the same result since we only reversed the uniform
electric field. The algebraic identity of these two cases has been

demonstrated as a partial check on the algebra.

Upper and Lower Bounds for the Rigid-Rotator--Numerical Results

The entire calculation was done on the IBM 709 at the Univer-
sity of Florida Computing Center. Upper Bound energiés were [irst
obtained by the Rayleigh-Ritz variational method using subroutine
Givens%9 (single precision). In order to clarify the cases where the
upper bound and lower bound were so close that it was difficult to say
which was lower, the upper bounds were refined using & double-precision
iteration method*lg and the remainder of the calculation was also

carried out in double precision.

*

9"Eigenvalues and Eigenvectors by the Givens Method,'" Quantum
Chemistry Program Exchange, QCPE 12C (1963).

.x.

K%. E. Reid, "Eigenvalues by Lbwdin's Partitioning Method,"
QCPE 14C (1963), modified for double precision.
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Except for the level m = 0, all the other levels are degenerate.
. . :ﬁ{ . Fel. -
However, the Hamiltonian commutes with L =3 YA therefore one
can separately solve the energy eigenvalue problem for each subspace
Sm for a given value m of Lz' Calculations for the first six subspaces
(So to 35) have been carried out for the twenty lowest eigenvalues in
each subspace with the perturbation coefficient X ranging from 0.1 to

1.0.

In Table 1, upper bounds E; = 80 and lower bounds E, = &! of

¥
L 1
energy eigenvalues are given to sixteen significant digits for typical
choices of K and m. The eigenvalues are labeled by the 4 of the un-
perturbed state.

NU is the number of basis functions used for finding upper

. . . . m
bounds (these functions are the normalized spherical harmonics Ym,

m . 3 iame P T
Y o412 e Y2+NU_1), and N} is the number of basis functions Y , Y .,
.o Y2+N _1) for the Aronszajn space.

L

This method of evaluating lower bounds, using the bracketing
property of (6.1), requires good upper bounds, and the upper bounds are
improved by increasing the number of basis functions NU used in the
variational calculation. The results in Table 1 indicate that fairly
good upper bounds are generally obtained by taking NU =4 +5, In
order to obtain good lower bounds, we have to enlarge the Aronszajn
space, and we can see from the results indicated in Table 1 that in
the present case the dimension of the Aronszajn space N. is sufficient

L
to give good lower bounds provided N, = 4+ 5,




UPPER AND LOWER BOUNDS FOR EIGENVALUES FOR
THE STARK EFFECT IN A RIGID ROTATOR

m = 0, K =20.5
2 7
2 N N E, and E
0] 5 -0. 41050793 4322997
5 “'(\' 41030 ()f)‘:v-_.)ol )
1 6 2.024369502825 4599
6 2.024369028254509
2 7 6.005966607.238025
7 6.005966607238923
3 8 12.002778L3867649
8 12. 06277848H67648
L 9 20.0001623480500585
g 20.000162347506587
5 10 30.001068k0547832
10 30.001068405 17831
6 11 h2.00075758568145
11 42.000757585681 L4
7 12 56.00056561 ,8;“30
12 56.00056561435278
8 13 C72.00043856531220
13 72.000433859631218
9 14 20 .0000350145GH883
14 50.00003501 405682
10 15 110.000286041£819
15 110.0002860k16819
11 16 132.00023809551%5
16 132.0002380955193
12 17 156.000201 2581
17 156.00020126841 7
13 18 182.0001724138988
18 182 00017“'1,896,
1k 19 210.00014934265a7
19 210.00014934265450
15 20 2L0. ﬂOl'CGlsﬂﬁ%G
20 240 .0001306165555
16 20 272.00011a?u{hO+C
20 272.000115207 4045

\A

N



TABLE 1--Continued

m = 0, K =0.5
3w &
)/ Ny N E,; and Ep
17 20 306.0001023751256
20 306.0001023751242
18 20 342.0000916008325 °
20 3M(DMQIJW&W
23 342.0000915751040
19 20 380. OOlch)Q’ﬂO?O:_
20 380 .000CT22250626
24 280.0000822706509
m = 1) X = 1.0
1 5 1.950333005229181
5 1.950333905229141
2 6 6.011577027242672
6 6.011577927242670
3 7 12.00832615435640
7 12.00832614435839
L 8 20.00551433162358
8 20.00551033162356
5 9 30. 0038h6267301 39
g 30.00384526735 157
6 10 i2.00281392300602
10 uaomﬁugzmwwe
7 11 56.0021L127777589
11 56. 0021h1b777 586
8 12 72.00168130591003
12 72.00166130591091
9 13 90.00135388552012
13 90.00135386552910
10 1k 110.0011129663826
1L 110.0011129663825
11 15 132.0009307395%22
' 15 132.0009307395921
12 16 ] 156.0007896715423
16 156.0007896715 422
13 17 182.0006782886897
17 182.000678:2886697

- r‘
S
s



TABLE l--Continued

m=1, K= 1.0
a
) N, N E; and E
1k 18 210.0005888386502
‘ 18 210.0005888386500
15 19 240.0005159358681
19 210.0005159358679
16 20 272.0004557472937
20 272.0004557472681
17 20 306.0005054860207
: 20 306.0004054860206
18 20 " 342.0003630874514
20 342.0003630874365
23 342.0003630874366
19 20 380.0003274705419
20 380.0003269927098
23 380.0003269958156
20 20 420.0062377999262
20 420.,0002179895039
24 420.0002042543069
m=3 K = 0.7
3 5 11.99319648972468
5 11.99319648572467
b 6 19.99888486422010
6 19.99888486422010
5 7 30.00020901290087
_ T 30.00020901290086
6 8 42.00053019645272
' 8 42,00053019645271
7 9 56.00057406214888
9 56.00057406214887
8 10 72.00053726950879
10 72.00053726950875
9 11 90.00048038806258
11 90.00048803806256
10 12 . 110.0004230273525
12

110.0004230273523

57




TABLE l-<~Continued

m = 3, K =0.7
a
L Ny N E, and Ef
11 13 132.0003712115186
13 132.0003712115184
12 14 156.0003262415718
14 156.0003262415716
13 15 182.00028779834C3
15 182.0002877983402
1k 16 210.0002550776513
16 210.0002550776511
15 17 240.0002272074346
17 240.0002272074345
16 18 272.0002033918627
18 272.0002033918626
17 19 306 .0001829503520
19 306.0001829503519
18 20 342.0001653171585
20 342.0001653172584
19 20 380.0001500277721
20 380.0001500277720
20 20 420 .000136702L4596
20 1,20.000136702458k
21 20 462 .0001251239667
20 462.000125030423k
22 20 506.0027336495416
20 506 .0000914202348
m= 5, K= 1.0
5 pl 29.99359063883720
5 29-99359063883718
6 6 41.99761861361275
6 41.99761861361275
7 7 55.99923213730367
1 55.99923213730366
8 8 71.99952678740871
8 71.999926787L0869
9 9 90.00023337531917
9 90.00023337531912

Ji

(¢+]



TABLE l--Continued

m=5, K=1.0
» 1 a
j NU ) NL EU and EL

10 10 110.0003640283063
10 110.00036 40283062

11 11 132.00051124363%¢
11 132.0004112436339

12 12 156 .00041805 L2290
12 156.0004180% 42288

13 13 182.0004054534825
13 - 182.000405453432)

14 1k 10.0003840228310
‘ 14 210.0003840228503

15 15 240.0003591944730
15 L 2L0,0003591944728

16 16 272.0003337620168
16 272.0003337620166

17 17 306 .0003091323675
17 306.0003091323674

18- 18 342.000285971171L
18 242.0002859711713

19 19 380.0002645455813
19 380.0002645455812

20 20 ' 420.0002445100770
20 420 .0002449100769

21 20 462.0002270087367
20 462 .0002270087364

22 20 . 506.0002107319706
20 506.0002107319655

23 20 552,0001962023146
20 552.0001959463010

24 20 . 600, 004984 1862676
20 600.0001226802245

“The upper bound is given first, followed by the
lewer bound.

b
In those cases where wore thau one N, was used,

a lower bound is indicated for each NL* .




R U & A
Upper and lower bounds agree to fourteen significant digits in

those cases where NU = NL = § + 5. For the highest energy levels

listed, for example, K= 1.0, m = 1, } = 20, NU = 20, NL = 20, the

agreement is poorer, but is Improved somewhat by increasing N

L The
limitation here seems to be due to the poorness of the upper bound
rather than the dimension of the Aronszajn space.

To see in more detail the effect of NL fo; a fixed wvalue of NU’
several exémples are given in Table 2. 1t is seen from {(6.29) that,
when the Aronszajn space éf is chosen as indicated in (6.26), for

NL less than (f-m), the lower bound E . is a persistent lower bound,

[y
given by

E = 2(4+1) - K .

In order to obtain better lower bounds, therefore, the Aronmszajn
space gp has to be chosen in such a way that there are non-vanishing
elements of £, ; namely B B and in our cagse. Increasing

Pys Y Ppem? Pfemr? Bﬁ-nﬁﬁ
NU in Table 2 beyond the values indicated did not improve the lower

bound.

%11 .
ILExcept for one case, m = 0, [ = 0, K = 0.5, where it agrees
only for 13 significant figures.
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TABLE 2

EFFECT OF NL ON EL IN THE CONVERGENCE

TO THE EIGENVALUE

m K 4 NU N, Ej and B

0 0.1 10 15 a 110.0000114414483 b
1-9 109 .9000000000C00%

10 © 109.94774k3614383

13 110.000011k416082

0. 0.5 10 15 110.0002860416819
' 1-9 109.5000000000000%

10 109.7412282838218

13 110.0002860516817

’ 15 110.0002860416818

1 0.7 16 20 272.0002233160454
1-14 271. 3000000C00000%

15 271.6219989276613

18 272.0002233160452

2 1.0 12 15 - 156.0007432191651
1-9 155 . CO00CO0CO0000%

10 155. 4101468398408

13 156.000742219164k4

15 156.0007432191651
3 0.7 10 12 110.0004230273525 |
1-6 109. 3000000000000%

'8 110.0003141668453

10 110.0004230273523

5 1.0 20 20 420.0002445100770
1-14 419.0000000000000*

15 419.3717170996393

18 420.00025L9100768

20 420.0002449100769

%The notation 1-9 indicates that the value of - N, ranges
from one through nine.

bAsterisks indicate persistent lower bound.




CHAPTER VII

LOWER BCUNDS TO THE GROUND STATE ENERGY
LEVELS OF TWO-ELECTRON IONS

The non-relativistic Hamiltonian of this system is divided

into two parts:

i

- oy (7.1)

with
70 z z
He = -yn, -2, -2 -2 (7.2)
1 o> fa I‘] rr')
- pAS
1 . .
and Vo= o in atomic units,

where Ty and r,

J

dencte the radial positions of electrons 1 and 2; 1o

I

denotes the distance between electron 1 and 2% and Ai i5 the Laplacian
. . — . . . . ,
operator in the coordinates ri(l = 1,2). Since we estimate only the

o .

ground state which is singlet §, we restrict ourselves to the subspace

)

in which the spacial coordinates r, and r. are symmetric with respect
L
fo s . [21]
to their interchange, and the angular momentum is zero .

In the application of the method developed in Chapter V, we
have freedom in choosing a subspace for the inner projection of the
reaction operator t(€). However, we have to take into account two fac-
tors in our consideration: one is the convenience of our treatment and

the other is the convergence property of cur lewer bounds. Here we

introduce two types of spaces [or our inner projection: one is the

be




practically convenient Bazley space &b the other is the LYwdin space é.

Since the choice of the Bazley space has some interesting features in

connection with the simplicity of our calculations and the independence

of our lower bound to the upper bound ﬁb’ we will briefly describe this

choice in Appendix II, while in this chapter we will mainly work with
the Lbwdin space.

The Lbwdin projection of t gives

e = (e~ ) $>a1g Sl - #(O) (7-3)

where, using (4.22) and (5.67), Ahas the form

0 "].A o y 0,
A =& FLESFOWT(E, AO) = (&- FO) + (£ - AV OO
(1-4)
L o (3 v Fod
The unperturbed Hamiltonian ?ﬁﬁ has known eigenvalues and eigenfunc-
tions which are products of hydrogen-like wave functions. The discrete

eigenvalues in atomic units are given by

2
- L), (am=12,.00) (7.5)

Arranging these in a non-decreasing sequence

E] £ Ep .« -y (7.6)
one obtains from (7.5)
£ = - 2, Eg = - 6.6252%, ‘Ei = - %22}
Ef = - 0.531252°, EJ = - 0.522° S



Hence, if an upper bound to the ground state energy E. lies below

P X . . - \
-0.6252"7, then the one-dimensional reference manifold can he uszd.

In Table 3 it is seen that, except for the case Z = 1, we can
use {3.35) for the lower bound calculations of two-electron ions. The

. . . . W) . g
following six eigenfunctions of T}C are used for the multi-dimen-

sional reference manifold:

= (L [
1 =GR (m IR o (x5)

]
|

1 / P
- <m)[R]O(rl>RlO(r2> -+ Rlo<rl)Rlo\r,))]J (122).‘3) L)'),’

o _ M3 )
o2 = DRy (7 )Ry (1 )Py (c0s 03201

Vr; ¢ 7.5
¥g = (E;)[R32(rl)R21(r2)P2\cos 91501 (7.6)

where R, are hydrogenic normalized radial wave functicns.

ny
[23]

Six terms of the Hylleraas series are used for the Lbwdin

space. The normalized forms of these six terms ave:

goD\j “ { vh e
. - =4 "le . - A:_ﬂf TS
3 T T € » Ja 7 e ue
1 811 o 169 \/O ’
19325 2 -ns (2n)u -8 o
= AL w7 R
33 Gon e 5 3y BnV§é &0 (7.9)
"
.o (en)2 2 -ms .. (3 2 s
I 96 S ¢ 2 Jg : v e
5  9bx O 1601 V3
where
=0 * Tor £ = S e and S P (7.10}

One can enlarge the Lbwdin space in order to improve the lower bounds.
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The arbitrary scaling parameter 1w is varied to maxiﬁize the lower
bounds obtainable.

It is seen f¥om (7.7) and Table 3 that for TO(&b} to be nega~
tive definite S{ &) has to contain at ieast four lower lying eigen-

functions of JL{O, namely W?, Yo, ¥° and Yz for Z = 1, whereas only

2”73

o . .. N
is sufficient for Z = 2. 1If one uses, as a typical

1

example, all six functions in (7.8) for S( &), then from (7.3) and

one eigenfunction V¥

(7.4) one obtains

v ‘ 6 »
A& = < Fle - FHOTHE- HON-(E - RO+ g;,l(a B [T ><e i § 2,

(7.11)

[o}

and
tyy = < ‘1'121(50*35)\ 5> Are 3 }(50-132); ‘1’27 N

where tl'dl = < ‘lfl‘ilt'] ‘1’2 >. (7.12)

Substituting (7.12) into (5.84), then the lowest eigenvalue of {5.84)
is a lower bound to the ground state of #0. oOrce the A matrix is
obtained the rest of the calculation is elementary. Most of the overlap

integrals of the type <;w? > are complicated in their algebraic form.
i

iy
Some typical examples of the terms which comprise each elem. .z of the A

matrix are.

_ - 22 .,
<j2'(£0‘ﬂo)v 1(80- %O>IJ2> = 3'?8122( [e] -.-] ) - -éz%(éoﬂh) 1
+ 8.75(E PN (z-0) + (& £ 2 - h5)n (zen)

+ %g(h8 4n 2 - 29)n3 + (€ fn 2 + 4.5)n(z-n)" )

iy (£~ O3> = (E402) -

O\
o3
+
ot
-
n
o)
N
~
§
P}
e
.
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3
wO s - . 21 1 Nz
Qeplip> = 512 [(zw)(z-:—aq)( [z. + 2n ] ’

where A= % + 7 and B=2Z+n

Numerical Results and Discussion

The numerical calculations was carried out on the IBM 709
; electronic computer at the University of Florida Computing Center.
In the estimation of the lower bound to the ground state energy, by

*9

use of (5.83), Givens ” subroutine was used.

The upper bounds, denoted by EUs are taken from Table 3 and
the lower bounds, denoted by EL’ are optimized with respect to the
scaling parameter m. It can be scen that the scaling of the exponential
coefficient for the reference function does neot introduce any new
feature in our problem. In the following tables, NR denotes the dimen-
} e A et o lea e e < ams 2O
sion of the reference manifold associated with the eigenfunctions #.,
O 4O o , . s
Yl,Yg,.,.,YN s Whereas NP denotes the dimension of the Lbwdin space,
R
jl’jE""’jN . The energy is expressed in atomic units.
P
In Table 4, the lower bounds to the ground states of two elec-

tron ions from Z = 1 to Z = 10 are listed. The upper and lower bounds

agree up to two significant digits except for Z = 1.
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In Table 5, the effects of NR and NP on the lower bounds for

each Z are demonstrated with optimized 7 at NR = 6 and NP = 6. It is

seen form Table 5 that the lower bounds do not improve, as one might

hope from the discussion of Chapter V, when one increases the value of

N This might indicate that even if the lower bound £, in {5.78)

R.

should be improved by increasing N_, the corresponding improvement in

R
E; may be offset to some extent by the tendency fcI'EZ to be depressed
as the size of its secular equation increases (accurding to the varia-

tion principle). On the other hand the increased value of N, gives rise

P
to an improvement of the lower bounds. For Z = 1, the most cutstanding
change comes as we increase NP from 3 to U4, which corresponds to adding
'jh to the LBwdin space spanned by jl’ j2 and j3, whereas for Z ¥ 2 more

than 50 percent of total improvement, from N takes place at

J_T
p=1 £© Npogo

the change of NP from 2 to 3. Hence the choice of the proper function,
rather than. increasing the number of functions, for the LYwdin space

seems to be more significant in our problem. The effect of the scaling
parameter 7 on the lower bounds for Z = 1 (with Np = 4, 5, and 6) and
Z = 2 (with N, = 1,2,...6) is illustrated in Figs. 2 and 3. In both

figures, the increase of NR up to 6 does not improve lower bounds appre-

ciably. For some part of the curves the improvement of the lower bounds

by the increase of NP is too small to be seen in the present figures,

As a numerical demonstration, for Z = 1, n = 0.7 one has

N
NNR i 6
i3 -0.5561906 -0.5561905
5 -0.5560375 ~0.5560366
6 -0.5560233 -0.5560211
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For H , the lower bounds assume a flat top type curve. The flat top
behiavior of the curves for Z = 1 may explain the large gap between
the upper and the lower bounds. This behavior may indicate chat the

functions we have chosen for the Lbwdin space, altheugh suitable

i
Fi
8]
a4

helium, are probably not entirely suitable for H with respect to the
variation of 7.

Abgood choice of the Lbwdin space is essential in order to
improve our 1ow§r bounds. In contrast with the behavior for 2 = 1,
Fig. 3, for Z = 2, shows a fairly good convergence of the bound as wa
ihcrease NP; furthermore, the curves are of an approximetely parabolic
hppearance indicating that the choice of the LYwdin space is satisfac-
tory with respect to the variation of the scaling parameter 7. Intere

estingly enough, Fig. 3 is very similar to that obtained by J. G. Ga'L
; 3 3 )

N
,l
A

.

T,
-

He obtained the lower bound to the ground state of helium by solving the

determinant:
get (< EI(m- 2O - £E0) - (2-FONGF) = 0. {(7.13)

The comparison is made in Table € between the lowcr bounds obtained from
(7.13) by Gay.' and those obtained from (5.84). It is seen from

Table & that the lower bounds cbtained as eigenvalues of the intermediate
Hamiltonian are slightly better than these obtained by the present
method, but the differences in the lower bounds of those two methods
decrease as one increases the value of NP until at NP = & there is
essentially no difference. The dependence of the lower hounds on the
scaling parameter 1 for Z = L, 6, 8 and 10 is shown in Fig. U, where Ny
and NP are fixed at the value of 6. 4s in the case of Z = 2, all curves

are roughly parabolic.
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The upper bound of the H is imbroved[esg by 0.00115 a.u.,
from -0.52531 to -0.526L46, by extending the Hylleraas~type wave func-
tion from three terms to six terms,‘whereas is seen from Table 5 the
-corresponding improvement for the lower bound is about 0.113. This
shows that the lower bounds improve more rapidly than the upper bounds
do by introducing more terms*lg. ‘Hence one can hope to improve the
lower bounds of the ground staté of‘H' by introducing carefully chosen
functions in the L¥wdin space.

In concluding the discussion it can be noted that, as one can
see from Fig. 2, the most outstanding improvement of the lower bound to
;the ground state of H takes place when one incorporétes the function
jh into the LBwdin space. The introduction of the function j5 also
shows remarkable improvement on the lower bound even if it does not
render significant contribution between the range 7 = 0.68 and n = 0.84.

In terms of hfdrogenic radial functions, jh and 55 assume the form
3y, = MR (7 )Ro (rp) + Roy (2 )R o (2) T, (7.14)

35 = N‘j[Rlo(rl)R?,Q(re) +a Rg]_(rl)a RQl(rQ) + R32(r2)RlO(rl)J’
(7.15)

where Nh and N_ are normalization constants, showing that jh'and 35 are

5

independent of 6 o2 the angle between electron 1 and 2. Since Rlo(r},

1
R21(r), and R32(r) have different spacial distributions from one
another, it seems that the introduction of some functions, which can

give a more flexible radial.distribution with respect to the variation

*125ee Table 1 of [15].




of over the wide range of space, can improve the lower bound satis=
factorily. In this connection, it might be wothwhile to incorporate
into the Lbwdin space some carefully chosen radial functiens which have
two different orbital exponents, for example, a function of the far@

-
investigated by'Chandrasekar[L7},

j= (IR IR Y (L b erpp 4 o) L (T216)

It may belalso worthwhile trying to use Hylleraas series given in (7.9)
by giving a different scaling parameter for each functiou.

For practical applications, a ﬁroper cholce of the functions
with suitable scaling parameters for the inner projection is to be

.preferred over expanding the number of functions.




APPENDIX I

Evaluation of the Matrix Elements used in Chapter VII

For S-state configurations, the atomic wave function can be

(23]

described in terms of the three coordinates

0
]
+

M

t=r,-r1,, {Al.1)

The volume element in terms of s, t, u coordinates (Hylleraas coordi-

[28,p.1737]

nates) is
dv,dv,, = TPu(s®-t?) du ds dt (Al.2)
with the range

~ust £y 0% u=x gz00, (A1.3)

In terms of the Hylleraas coordinates, ;{o given by {7.2) assumes

the form[29]
ﬂ°=-Fag+—§i+-§—Z _Ef_‘ﬁ‘.tfla at(sn-u) 22
5? 5t2  gu (s5-t°) e)sau (s2-t2) Jtdu
Ls 8. __ b 8 .22 , s
+(32et2) Js (s2-t2) ot *3 3 (s2-t2) (Al. %)
1 1
and V== == : (A1.5)
, r,, U

The multi-dimensional reference functions in {7.8') are linear combi-
nations of the form

£= e3Pt KA @ ; {A1.6)

79



do

where a>/bl>0 and £ is even; whereas the function for the inuer

projection have the form
= RN, (a1.7)
Matrix elements involving functions of type f and i were all evaluated

in a closed form. In the evaluation of A matrix using Hylleraas

coordinates s, t and u, two types of integrals are utilized. One is

Calny ks 2ym) = e Mg Kgg fzumdu fz(se-tg)n taﬁdt, (41.8)

where n = ~1,0,1, k20, £ 20, m2-1 and g »0. The algebraic expressious
[30]

for (Al.8) are given in The other is

"

(<4
-85 k s m ue 2 _,2) £ -bt
[ e “7s%ds fou du £u(s t=) tve dt

(a’b/k3£sm) i ;

H]

v L () P [ 2 ) (gt
o . . 1 { g+k+2) ( g+k 1)
Lt s )ity (gh)lg T {

i ! 2
bzimzp:_op.. fherd q: (a+b) {a+h)

~
.

. (,E+2)(.z+1)} (- )“'*q {(q+k+z)<q+k+-1) i (z+2‘.\<z+1)‘}
b o

2 2

AR fi-z Lm‘m}_‘p*m _(ﬂ_k}_ {_....._..l.

R — qtk-1
bﬂ"{”mHﬁ» g+1 p . q..o q“ (d""b) )

q t ] ( ) +
-1)™ m 4! k! (L2 (f+1)
+ +<1 4+ (—1)} 2 k- { :
(a-b}q+k+1} {. b2+m+¢ak$l L b?

p=0 ’ j b2 b

(k+?}{k _l}{z Lp‘hn) 4 (1) (204t ) J . (AL.9)
The integral (Al.9) was used as a means of checking some algebraic expres-
sions for the A matrix which were obtained by use of the polar cooxrdi-

(311

nates
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For the convenience of Fortran programming this form is transformed

into

_ +1<) 5% 1 (g2 ) giit1)
(a,b/k,l,m) (p (o [ — { )
,(’,'hn+2 Z Z % (a+p)TTRTL (a+b)?

+
] (m)<z+1)}+ (=)™ {Lq+k+2)(q+k+1) ] (z*rz‘;cz—ﬂ)}}
b2 (a-b)q+k‘1 a-b}2 b= J

It q
+ M Z q+k) b Z {p+m)! { 1
- 1 s
bz+m+<a qemt2 osa p! (atb)d k1

(qtlt2)(qHhtl) Lz+2)<;,-)} (=)™ {;_qwﬁ?(w S
(atb)2 b2 (a-b)T™ L (ap)@

_ U&+2)U,+1)\]_ (f+mrl) (2f+mth) ﬂ%ﬂ (__c_ﬁk)!bq[ 1
2

N Fe U P
L ()™ (E+k+m+2)l[ 1 N 1)’2
(2-0)TFEHL 2 (arp) s VP
m k! ) (p*m) ‘ (_*al(ﬁﬂ)

5 (A1.10)

a

_ () (N | (fmel) 2E+m+1+)]
b2

In order to aveid the effecf of round-cff error, (A1.9) is programmed

in double precision. This Fortran Program is listed on the following

pages.
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FUNGT IO LT (M)
Ly ¥y AND N
5 CanlidT oE

JERD

A IS vuSifivEe.

ey IS & o= Ny
MUse oo 25

LERU.

Kl =
K2

e P8

L
L2 = L Z
ML o= M i
M2 = z
Ly o= by

-
L I S S

LMY Lo+ M or 1
LM = L+ M+ 2
LM = L + M + 4
KML = K # M + 1
KMZ = + M+ 2

KLbha = K & L+ M + 2
KLM3 = K + L + 0+ 3
LZM4 = Z+L + M + 4
FK = K

FLo= L

FM =

FR1 = Hi

FK2 = K2

FLL = Bl

FLZ = L2

FRML = KMl

FRMZ2 = KM2

FLZ2NG = LZ2M4

ASQ = A=A

BSQ = B#3

Al = 1.

Bl = 1./8

AISQ
218G

Lo /ASHE
Le/35Q

AVE = A+ 8
ANE = A - 8
BPA = l./7APE

GCNA

L/ AND

APBSL = APB»AP{
ANDSU = ANDw®AND
GPASY = DPABPA
SNASE = BiAINA
FLLO =  (FLr2.)=(FL+Ld) 3/ L5GQ
FKKA = ( (PR32, (FK+1.) ) /AST

IF{L-EL/72122) b, 8
SIGL = L.

Ct 1O 9

SIGL -1.

IF{ M={M/2)=2 )
SIuM = la

ol TG i3

6y

Oy 10, 17

Av) SUT My} Mi
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12
13
i&
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
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34
35
36

37

38
39
49
41
42
“3
44
45
46
47
48
49

51
52
53
5¢
55
56
57
58
59
60
61
62

SIGY = -1,

RCL = DCT(L) /=2l M2)
C = DCTIM)

fFLLY 1Y, 19, 106

0 18 I=1,L

iM =1 + ¥

k= 0 - DCTL{IM, 1)

RCZ = {

RC3R = DCY(K)

ANLCR = DPAsmex

RNZCR = SIGM={BNAs®K]1)
RNINR = FR28FX1s8PASQ
RMZisR = FRZ28FKI®*DNASQ

RNIR = RNINR-TLLD
RMZR = RN2NR-FLLB

83

FUD IS THL PRUDUCT ONLY FOR RUNNING IaDEX, hLRt STA&T

FROM RC3R.
FUD = RC3R»{ RNICR#RNIR + RNZCR&RN2R )
IF{M) 39, 39, 29
DO 38 I=1,M

FI = [

RE3R = RC3R=2DB¥(ri+FN)/FI

RNICR = RNiCReBPA

RN2CR = = RUZ2CKR=CNA

RNIKR = (FK&*FI)*(FKI*FL}”L ASQ
RNZMR = (FKZ+FI )= (FKL+FL) 2R NASY
RNIR = RNINR - FLLO

RN2ZR = RNZNR - ©LLE

FUD IS RUNNI&G FROM RC3R

FUD = FUD + RC2R#{ RNLICR#RNIR + RM2CR#RNZR )
R = RCL=+RC2=FUD

IF(L) @ly 417 43

S = 0'

GO T 65

SCL = DCT(L)/{BeuiM2)

SC2R = OCTID{KM,yMYe(DuaM)

SNICR = BPAewKM]

SN2LR = BNAsaKML

FUD = 0.

DU 63 1=M1,L¥

FI = I

SC2R = SCZREBu(FK+FI)/FI
Q = O.

INM = [-M

DO 55 J=IAMsL

JM = J + M

Q@ =& +« DCTC(UM,J)

SC3R = Q

SiM1CR = SNICR=BPA

SNZ2CR = = SNZ2THR=BRA

SNINR = (FKZ+F£)*(F&1*FI)*BPAUQ
SN2NR = {FKZ+F[}= ;x;+F£)%B:~%Q
SNIR = SNINR ~ FLLSB

SMZR = SNZNR - FLLSB
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63
54
&5
66
67
68

69
70
71
12
13
T4

15
746
17
78
79
g0
81
82
63
84
85
g5
87
83
89
90
91

FUD IS
FUD
S =
TC1L
TC2nw =
Fhli=
TN2E =
FUD IS
FUD =
uwe 75
FI =
fC2Rr
TNLR
TN2R
FUL IN
FUD =
T = YC

¢

Bow i

(1R I TR

AUNNING £20M SC2 :
FUuD + SC20=8C33#{ LNICAESNIR + Sw2CResnZR )

SFUD

i
BOT(LHL)=rL2Maes (Bl axelM4)

DETLK)
BiPAnrsK]

SIGM= (BNAR®KL)
RUNNING FROM TC2R

YO2R=({
I:‘lyLMl

TC2R#H

INIR + TNZ2R 1}

“{FK+FI)/FI

INIR#BPA

= TN2R=#BnA

RUNNINMNG FROM TC2R.
FUD + TC2#( TNLIR + TN2R )

1=FuUD

U = DCH(KLM2)%81S0n{ (BrAsskiM3) + SICLx{ENA=*KLM3)
IF( M=(M/2)22 ) 79, 79, 89

V€l =

Q = Ll
[F(L)

LG 84

iMm = 1
Q =
VNl
VN2
v = VC
GO ¢

Vv = J.
CHH =

RETURN
END

]

v

W

DCTI{K)+
T(M)
85y 85,
I=1~)L

+ M

(Al=eKi)e(alesiM2)®2,

82

+ DCTD(IN,T)
DCTIL) Qe { FLLO-FKKA)

DETILNML

)rrL2Ma=R15Q

i={ VN1+VNZ2 )

90

R +§ -

T-U+V

)




FUNCTION DCT(M) .

C FUNCTION MAKIMG FACTORTALS.
4 IF(M-1) 5, 5, 7
5 DCT = 10
6 RETURN
7T K =1
8
9

10

IF{M-8) 9, 9, 13

DO 10 I=2,M

K = Kz{

DCT = K

12 RETURN

13 b0 14 1=2,8

14 K=K=1

15 §$ = K

l6 DO 18 1=9,M

17 FI = 1~
S = S$=FI

19 DCT = §

20 RETURN
END

Qo
[
—

COO0O \v
[
@

FUNCTION DCTD(MsN)
FUNCTION MAKING M FACTORIAL DEVIDED BY N FACTOR{AL.
M MUST BE LARGER QR EQUAL TG N.
M AND N MUST BE POAITIVE INCLUDING ZERO.
10 N1 = N+1 :
Ll [F(M-N) l4, 12, 14
12 DCTD = 1.
L3 RETURN
14 IF(M) 15, 12, 15
15 S = 1.
16 DO 18 I=N1l, M
17 FIL = 1
18 S = S¥F}
19 DCTD = §
20 RETURN
END

OO0

<o

<

(v EvEvv



APPENDIX IT

Lower bounds using the Bazlev 3Space

It was seen in Chapter V that for V> O, one obtains

"l "1 ¢ ey N
+ =V - TO '\Aﬁf.l i
1If an upper bound Ek)satisfies the relation
o o \
E 3 E A2.2)
p < o < p+1 2 ( <
" :© th . 1 0 1 Y
where Lp . the p = eigenvalue of " from below, then t(&b, booomes

positive definite if one usec the projection operator defined in (5.76);

O = byl o<yl ; (A2.3)
i::

- o . . , - ) S0,
where g Zp and Wi is an orthonormalized eigenfunction of FL with

the eigenvalue Eg. If the Bazley space is chosen by

= (wO O .o -
b= ], v, o) (A2.%)

ther the corresponding form of (7.11) reads

. IR .
o= vy - A s iy g (A2.5)

ij i j £ _ @O

[6] “i

or

[s] "1 [0 . FAS N
= £ 7 fis g, (AZ.6;
. vl v !wj> if i g {a2.6]

This choice of the inner projection has =n advantage in that it siwpli-

fies the calculations, For this case

thy = (A (425
86




n o -1 )
Kig = Qg T B )y

a7

(A2.8}

The lowest eigenvalue of the matrix obtained from (A2.8) gives & lower

bound to the ground state energy of 3?*(.

As a particular case, if we let n &g, then every element of the

A matrix has the form (A2.6) and the corresponding lower bound is

independent of an upper bound v£°.

dimensional Bazley space

then

b= ‘Y; ’
A= ey,

v Ot =17, 0O -1 ™
ty = LV iy dudn -

Ky =B+ SAVR TR SREEP

A lower bound, for this case, is given by

o O ,~1, 0 -1
E1+.“’1‘V ]¥1> or E,

which ever is lower.

For the two electron ions, one has

2. 16

o O1,~1ig0 N\ -1, _ 16
El+{v1\v lwl) <+ 352

The simplest example of this choice is rendered by the one-

(42.9}

(42.10)

(A2.11)



G
g
pe]

and
E 2 = - ‘é‘(ﬂz .
o o]
It is seen that for Z = 1, E; is a lower bound teo the ground state
' > L2 16 ) , .
energy whereas for Z 22, - 27 + 3ZZ is a lower bound. It is
[
i -1 © - .
shownw] that Eol + < ‘1’;{\7 “l \Yl> 1 is a lower bound to the

ground state energy of j;f if

t=
=G
N
'_v
Q
/N
ta
N o
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